Quantification of Errors in Ordinal Outcome Scales Using Shannon Entropy: Effect on Sample Size Calculations
نویسندگان
چکیده
OBJECTIVE Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. METHODS We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. RESULTS Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001). Taking errors into account, SAINT I would have required 24% more subjects than were randomized. CONCLUSION We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.
منابع مشابه
Consensus and dissention: A measure of ordinal dispersion
A new measure of dispersion is introduced as a representation of consensus (agreement) and dissention (disagreement). Building on the generally accepted Shannon entropy, this measure utilizes a probability distribution and the distance between categories to produce a value spanning the unit interval. The measure is applied to the Likert scale (or any ordinal scale) to determine degrees of conse...
متن کاملThe Effect of Measurement Errors on the Performance of Variable Sample Size and Sampling Interval Control Chart
The effect of measurement errors on adaptive and non-adaptive control charts has been occasionally considered by researchers throughout the years. However, that effect on the variable sample size and sampling interval (VSSI) control charts has not so far been investigated. In this paper, we evaluate the effect of measurement errors on the VSSI control charts. After a model development, the effe...
متن کاملPreference Inconsistence-Based Entropy
Preference analysis is a class of important issues in ordinal decision making. As available information is usually obtained from different evaluation criteria or experts, the derived preference decisions may be inconsistent and uncertain. Shannon entropy is a suitable measurement of uncertainty. This work proposes the concepts of preference inconsistence set and preference inconsistence degree....
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کامل